Strategies for solving enthalpy calculations

What sort of question / data do you have?

Temperature rises and volumes of water or solution, average bond energies or ΔH info ($\Delta_{f}H^{o}$, $\Delta_{c}H^{o}$, $\Delta_{r}H^{o}$, $\Delta_{fus}H^{o}$, $\Delta_{vap}H^{o}$)

Temperature rises and volumes	Average bond energies	Do you have all the necessary $\Delta_{ m f}{ m H}^{ m o}$ data that you need?	
		Yes	No
Use q = mc∆T And	Bond breaking is endo, bond making is exo	Use a form of Hess's Law $\Delta_r H^\circ = \Sigma \Delta_f H^\circ$ (products) - $\Sigma \Delta_f H^\circ$ (reactants)	Need to use Hess's Law
$\Delta_r H^o = q/n$ (endo) $\Delta_r H^o = - q/n$ (exo)	The overall difference between the bond breaking and making is the enthalpy change	Remember some $\Delta_c H^\circ$ can be used e.g. $\Delta_c H^\circ(C(s)) = \Delta_f H^\circ(CO_2(g))$ both have the same value because the equations are the same for both	Either construct a diagram (usually triangular shape or rectangular shape with equations and arrows) or line up below and cancelling equations method
	Note: these Q are now more common in L2 but you could still get one	$C(s) + O_2(g) \rightarrow CO_2(g)$	Remember that if you reverse an equation you need to change the sign

UNITS: Use kJ except use kJ mol⁻¹ when...

 $\Delta_{c}H^{o}(S(s))$ one mol of S solid is completely burnt

 $\Delta_{f}H^{o}(CH_{4}(g))$ one mol of CH₄ gas is formed

 $\Delta_r H^o$ one mol of reaction (which means the quantities that are reacting in the equation